Technology Solutions to Industries and Regulators

Dr.S.Suresh Kumar Technical Director

Selection of Online Monitoring Systems

Emission Limit Value

Concentration Range / Calibration Range

Certified / Approved Analyser

Principle of Analyser based on Flue gas Characteristic

Location of Analyser

Proper sampling port, Ref sampling port, Homogenize profile

IQ, OQ, PQ

Calibration / Drifts

Proper concentration and analyte Standard gas cylinder

Training

Approved DAHS

Reporting values should be national standard requirements

Data Validation

Critical Spares Availability at site

PRINCIPLES OF PM MEASUREMENT

- (i) Light scattering
- (ii) Probe electrification
- (iii) Light extinction
- (iv) Optical scintillation
- (V) Beta attenuation

% opacity

Characteristics of Opacity

With a uniform dust concentration the opacity measured depends on the measurement path.

Extinction

- Extinction is linearly proportional to the number of particles in the measured path and to the pathlength.
- If 'A' is 0.3 extinction, 'B' will be 4x0.3=1.2 extinction

Suitability of PM- CEMS

Measurement Technology		Stack Diameter (m)	Concentration mg/m ³		APC device	Min. certification.	Drv	Humid	Wet	Velocity
			Min	Max		range			met	Dependant
Probe Electrification	Electrodynami c	0.1 -3 (6m with multiple probes)	< 0.1	250	Bag, Cyclone, Drier,	0 to7.5mg/m3 (QAL1 to EN- 15267-3)	V	V	x	Not in 8 - 18m/s range
	AC Tribo	0.1 - 3	< 1	250	Bag, Cyclone	0 - 15mg/m3	٧	x	х	Yes
	Tribo	0.1-3	< 1	250	Bag, Cyclone	qualitative bag leak	V	x	x	Yes
Transmissometry	Dynamic Opacity / Scintilation	0.5 - 10	10 10 ^(5m stack) 25 ^(2m stack)	1000	Cyclone, ESP, None	0- 150mg/m3	٧	x	x	No
	Opacity/	1 - 15	10 ^(at 5m) 50 ^(at 1m)	1000	Bag, Cyclone, ESP, None	0- 50mg/m3	V	x	х	No
	Extinction	0.5-12	< 30	1000	ESP, None	None	V	х	х	No
In-situ Light Scatter	Scattered Light (Fwd)	1 - 3	< 0.1	300	Bag, ESP, None	0-15mg/m3	٧	x	x	No
	Scattered Light (Back)	2 - 10	<0.5	500	Bag , ESP, None	0-7.5mg/m3	٧	x	x	No
Extractive light scatter		0.5 - 10	0.1	100	Wet collector (wet FGD)		٧	V	V	N/A
Extractive Beta		0.5 -10	0.5	< 150	Wet collector (wet FGD)		٧	V	٧	N/A

Super Iso-Kinetic Conditions $V_N >> V_S$

Sub Iso-Kinetic Conditions $V_N \ll V_S$

Gravimetric Measurement – Reference Measurement

Method 5 Isokinetic System

EN 14181 - SIMPLIFIED

PM CEMS Calibration

 Profile measurements has to be considered

 Calibration is performed under different plant operation and conditions to achieve different dust load.

Relationship between dust concentration in mg/m³ and monitor output in mA

Analyser Technology Process to Emission

- Temperature
- Pressure
- Flue Gas Composition
- Moisture Content
- Location of the Analyser

CONFIDENCE COEFFICIENT (CC)

LINEARITY ERROR [LE]

CALIBRATION ERROR [CE] For New CEMS

RELATIVE ACCURACY TEST AUDIT (RATA)

INTERFERENCES IN CEMS ANALYSERS

TECHNIQUE	TYPICAL INTERFERENCES
IR : SO2, NO, CO2, CO	H2O, CO2, CO, Temperature
Luminescence : SO2, NO2	H2O, Hydrocarbons
UV : SO2 NO	NO SO2
Paramagnetic : 02	NO

Remote Calibration Conceptual Architecture

CAAQMS Station

BAM for Particulates

- The first U.S. EPA designated method for PM_{10-2.5} continuous monitoring.
- Both units are identical except for the BGI VSCC cyclone on the PM_{2.5} inlet.
- The coarse firmware has a simple menu setting that determines which unit is the PM₁₀ master or PM_{2.5} slave in the system.
- Each unit has its own 16.7 lpm flow system, pump, and AT/BP sensor.
- The master unit synchronizes the slave clock automatically.
- PM₁₀ data and flow volumes are stored in both standard and actual conditions!
- Any errors or alarms in either unit are visible in the master data file.

Measurement of SO2 by UV Fluorescence

📠 Lens

0

S

0

The UV source, a zinc discharge lamp, radiates ultraviolet light at 215 nm into the reaction chamber where it interacts with the SO2

Nitrogen Oxides Analyser

STACK EMISSION DISPERSION MODELLING

FUGITIVE EMISSION DISPERSION MODELLING

FUGITIVE EMISSION DISPERSION MODELLING

📠 Lens

CAAQMS Data Interpretations Anand Vihar (Before and After Lockdown)

Comparison Between Feb 2020 & March 2020 – Geglens PM10

PM10 - February

PM10 – March 2nd week

PM10 – March 3rd & 4th Week

Comparison Between Feb 2020 & March 2020 – PM2.5

Frequency of counts by wind direction (%)

Frequency of counts by wind direction (%)

PM10 – March 3rd and 4th Week

PM10 - February

PM10 – March 2nd Week

Comparison Between Feb 2020 & March 2020 – NO2

N 30% 25% 20% 80 to 90.97 155 70 to 80 10% 60 to 70 50 to 60 Ε 40 to 50 30 to 40 20 to 30 10 to 20 0 to 10 NO2 mean - 44.585 calm = 0% Frequency of counts by wind direction (%)

PM10 – March 1st Week

PM10 – March 2nd & 3rd Week

PM10 - February

Concentration variation between February and March 2020

PM10 Concentration Trend between February and March 2020

Concentration Range [µg/m3]	PM10 – February [%]	March 1 st Week [%]	March 3 rd Week [%]	March 4 th Week [%]
<100	0	25	100	100
100 - 200	35	55	0	0
200 - 300	50	15	0	0
<300	15	5	0	0

Comparison between February & March on PM10 concentrations are well reduced due to lockdown in Delhi and the vehicular emissions are drastically reduced. Mostly on March the maximum concentration range between 0 - 50µg/m3 are 100%. Where as on February the higher concentrations i.e more than 200µg/m3 is 65%.

Pollutants Concentration Trend between February and March 2020

Period	Peak Concentration [µg/m3]					
	PM10 PM2.5		NO2			
PM10 – February	650	280	140			
March 1 st Week	420	160	85			
March 3 rd Week	250	110	52.5			
March 4 th Week	55	15	30			

The concentration levels are reduced due to lockdown and the % reduction on peak concentration was higher. PM10 peak concentration is reduced around 79% (from 350µg/m3 to 75µg/m3), PM2.5 peak concentration is reduced around 95% (from 280µg/m3 to 15µg/m3) and NO2 peak concentration is reduced around 79% (From 140µg/m3 to 30µg/m3),

PM2.5 Concentration Trend between February and March 2020

Concentration Range [µg/m3]	PM2.5 – February [%]	March 1 st Week [%]	March 3 rd Week [%]	March 4 th Week [%]
<50	5	22.5	72	100
50 - 100	42	60	18	0
100 – 150	30	10	10	0
<150	23	7.5	0	0

Comparison between February & March on PM2.5 concentrations are well reduced due to lockdown in Delhi and the vehicular emissions are drastically reduced. During February $50 - 150\mu$ g/m3 is around 72% and the same trend is on March 1st week but from 2nd week onwards this was reduced from 72% to 10%. Whereas less than 50μ g/m3 is around 72% and 100%.

BEST QUALITY ASSURANCE SYSTEM

Good

Sampling

Good Analysis

Coordination

Dr.S.Suresh Kumar

Chief Technical Director Mobile No: 9940157123, 9884836199 Email: suresh@glenslabs.com